Definition
Given a set of k + 1 data points
where no two are the same, the interpolation polynomial in the Lagrange form is a linear combination
of Lagrange basis polynomials
Note how, given the initial assumption that no two are the same, so this expression is always well-defined. The reason pairs with are not allowed is that no interpolation function such that would exist; a function can only get one value for each argument . On the other hand, if also, then those two points would actually be one single point.
For all, includes the term in the numerator, so the whole product will be zero at :
On the other hand,
In other words, all basis polynomials are zero at, except, because it lacks the term.
It follows that, so at each point, showing that interpolates the function exactly.
Read more about this topic: Lagrange Polynomial
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)