In Animals
Reptiles, which rely primarily on anaerobic energy metabolism (glycolysis) for intense movements, can be particularly susceptible to lactic acidosis. In particular, during the capture of large crocodiles, the animals' use of their glycolytic muscles often alter the blood's pH to a point where they are unable to respond to stimuli or move. There are recorded cases in which particularly large crocodiles who put up extreme resistance to capture later died of the resulting pH imbalance.
In domestic ruminants, lactic acidosis may occur as a consequence of ingesting large amounts of grain, especially when the rumen population is poorly adapted to deal with grain. Activity of various rumen organisms results in accumulation of various volatile fatty acids (normally, mostly acetic, propionic and butyric acids), which are partially dissociated. Although some lactate is normally produced in the rumen, it is normally metabolized by such organisms as Megasphaera elsdenii and, to a lesser extent, Selenomonas ruminantium and some other organisms. With high grain consumption, the concentration of dissociated organic acids can become quite high, resulting in rumen pH dropping below 6. Within this lower pH range, Lactobacillus spp. (producing lactate and hydrogen ions) are favored, and Megasphaera elsdenii and Selenemonas ruminantium are inhibited, tending to result in a considerable rise of lactate and hydrogen ion concentrations in the rumen fluid. The pKa of lactic acid is low, about 3.9, versus, for example, 4.8 for acetic acid; this contributes to the considerable drop in rumen pH which can occur. Because of the high solute concentration of the rumen fluid under such conditions, considerable water is translocated from the blood to the rumen along the osmotic potential gradient, resulting in dehydration which cannot be relieved by drinking, and which can ultimately lead to hypovolemic shock. As more lactate accumulates and as rumen pH drops, the ruminal concentration of undissociated lactic acid increases. Undissociated lactic acid can cross the rumen wall to the blood, where it dissociates, lowering blood pH. Both L and D isomers of lactic acid are produced in the rumen; these isomers are metabolized by different metabolic pathways, and activity of the principal enzyme involved in metabolism of the D isomer declines greatly with lower pH, tending to result in an increased ratio of D:L isomers as acidosis progresses. Measures for preventing lactic acidosis in ruminants include avoidance of excessive amounts of grain in the diet, and gradual introduction of grain over a period of several days, to develop a rumen population capable of safely dealing with a relatively high grain intake. Administration of lasalocid or monensin in feed can reduce risk of lactic acidosis in ruminants, inhibiting most of the lactate-producing bacterial species without inhibiting the major lactate fermenters. Also, using a higher feeding frequency to provide the daily grain ration can allow higher grain intake without reducing the pH of the rumen fluid. Treatment of lactic acidosis in ruminants may involve intravenous administration of dilute sodium bicarbonate, oral administration of magnesium hydroxide, and/or repeated removal of rumen fluids and replacement with water (followed by reinoculation with rumen organisms, if necessary).
Read more about this topic: Lactic Acidosis
Famous quotes containing the word animals:
“Lions, wolves, and vultures dont live together in herds, droves or flocks. Of all animals of prey, man is the only sociable one. Every one of us preys upon his neighbour, and yet we herd together.”
—John Gay (16851732)
“Why do precisely these objects which we behold make a world? Why has man just these species of animals for his neighbors; as if nothing but a mouse could have filled this crevice?”
—Henry David Thoreau (18171862)