Kuratowski Closure Axioms - Definition

Definition

A topological space is a set with a function

called the closure operator where is the power set of .

The closure operator has to satisfy the following properties for all

  1. (Extensivity)
  2. (Idempotence)
  3. (Preservation of binary unions)
  4. (Preservation of nullary unions)

If the second axiom, that of idempotence, is relaxed, then the axioms define a preclosure operator.

Read more about this topic:  Kuratowski Closure Axioms

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)