Definition
A topological space is a set with a function
called the closure operator where is the power set of .
The closure operator has to satisfy the following properties for all
- (Extensivity)
- (Idempotence)
- (Preservation of binary unions)
- (Preservation of nullary unions)
If the second axiom, that of idempotence, is relaxed, then the axioms define a preclosure operator.
Read more about this topic: Kuratowski Closure Axioms
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)