Kuratowski Closure Axioms - Definition

Definition

A topological space is a set with a function

called the closure operator where is the power set of .

The closure operator has to satisfy the following properties for all

  1. (Extensivity)
  2. (Idempotence)
  3. (Preservation of binary unions)
  4. (Preservation of nullary unions)

If the second axiom, that of idempotence, is relaxed, then the axioms define a preclosure operator.

Read more about this topic:  Kuratowski Closure Axioms

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)