Kummer Theory

Kummer theory provides converse statements. When K contains n distinct nth roots of unity, it states that any cyclic extension of K of degree n is formed by extraction of an nth root. Further, if K× denotes the multiplicative group of non-zero elements of K, cyclic extensions of K of degree n correspond bijectively with cyclic subgroups of

that is, elements of K× modulo nth powers. The correspondence can be described explicitly as follows. Given a cyclic subgroup

the corresponding extension is given by

that is, by adjoining nth roots of elements of Δ to K. Conversely, if L is a Kummer extension of K, then Δ is recovered by the rule

In this case there is an isomorphism

given by

where α is any nth root of a in L.

Read more about Kummer Theory:  Generalizations

Famous quotes containing the word theory:

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)