Kummer Surface

In algebraic geometry, a Kummer quartic surface, first studied by Kummer (1864), is an irreducible algebraic surface of degree 4 in with the maximal possible number of 16 double points. Any such surface is the Kummer variety of the Jacobian of a smooth hyperelliptic curve of genus 2; i.e. a quotient of the Jacobian by the Kummer involution x ↦ −x. The Kummer involution has 16 fixed points: the 16 2-torsion point of the Jacobian, and they are the 16 singular points of the quartic surface. Resolving the 16 double points of the quotient of a (possibly nonalgebraic) torus by the Kummer involution gives a K3 surface with 16 disjoint rational curves; these K3 surfaces are also sometimes called Kummer surfaces.

Other surface closely related to Kummer surfaces include Weddle surfaces, Wave surfaces, and tetrahedroids.

Famous quotes containing the word surface:

    A lifeless planet. And yet, yet still serving a useful purpose, I hope. Yes, a sun. Warming the surface of some other world. Giving light to those who may need it.
    Franklin Coen, and Joseph Newman. Exeter (Jeff Morrow)