Kummer Surface

In algebraic geometry, a Kummer quartic surface, first studied by Kummer (1864), is an irreducible algebraic surface of degree 4 in with the maximal possible number of 16 double points. Any such surface is the Kummer variety of the Jacobian of a smooth hyperelliptic curve of genus 2; i.e. a quotient of the Jacobian by the Kummer involution x ↦ −x. The Kummer involution has 16 fixed points: the 16 2-torsion point of the Jacobian, and they are the 16 singular points of the quartic surface. Resolving the 16 double points of the quotient of a (possibly nonalgebraic) torus by the Kummer involution gives a K3 surface with 16 disjoint rational curves; these K3 surfaces are also sometimes called Kummer surfaces.

Other surface closely related to Kummer surfaces include Weddle surfaces, Wave surfaces, and tetrahedroids.

Famous quotes containing the word surface:

    We’ve forgotten what it’s like not to be able to reach the light switch. We’ve forgotten a lot of the monsters that seemed to live in our room at night. Nevertheless, those memories are still there, somewhere inside us, and can sometimes be brought to the surface by events, sights, sounds, or smells. Children, though, can never have grown-up feelings until they’ve been allowed to do the growing.
    Fred Rogers (20th century)