Kumaraswamy Distribution - Relation To The Beta Distribution

Relation To The Beta Distribution

The Kuramaswamy distribution is closely related to Beta distribution. Assume that Xa,b is a Kumaraswamy distributed random variable with parameters a and b. Then Xa,b is the a-th root of a suitably defined Beta distributed random variable. More formally, Let Y1,b denote a Beta distributed random variable with parameters and . One has the following relation between Xa,b and Y1,b.

with equality in distribution.

\operatorname{P}\{X_{a,b}\le x\}=\int_0^x ab t^{a-1}(1-t^a)^{b-1}dt=
\int_0^{x^a} b(1-t)^{b-1}dt=\operatorname{P}\{Y_{1,b}\le x^a\}
=\operatorname{P}\{Y^{1/a}_{1,b}\le x\}
.

One may introduce generalised Kuramaswamy distributions by considering random variables of the form, with and where denotes a Beta distributed random variable with parameters and . The raw moments of this generalized Kumaraswamy distribution are given by:

Note that we can reobtain the original moments setting, and . However, in general the cumulative distribution function does not have a closed form solution.

Read more about this topic:  Kumaraswamy Distribution

Famous quotes containing the words relation to the, relation to, relation and/or distribution:

    We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.
    —D.H. (David Herbert)

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    The difference between objective and subjective extension is one of relation to a context solely.
    William James (1842–1910)

    The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.
    Rutherford Birchard Hayes (1822–1893)