Complexity
Where E is the number of edges in the graph and V is the number of vertices, Kruskal's algorithm can be shown to run in O(E log E) time, or equivalently, O(E log V) time, all with simple data structures. These running times are equivalent because:
- E is at most V2 and is O(log V).
- If we ignore isolated vertices, which will each be their own component of the minimum spanning forest, V ≤ E+1, so log V is O(log E).
We can achieve this bound as follows: first sort the edges by weight using a comparison sort in O(E log E) time; this allows the step "remove an edge with minimum weight from S" to operate in constant time. Next, we use a disjoint-set data structure (Union&Find) to keep track of which vertices are in which components. We need to perform O(E) operations, two 'find' operations and possibly one union for each edge. Even a simple disjoint-set data structure such as disjoint-set forests with union by rank can perform O(E) operations in O(E log V) time. Thus the total time is O(E log E) = O(E log V).
Provided that the edges are either already sorted or can be sorted in linear time (for example with counting sort or radix sort), the algorithm can use more sophisticated disjoint-set data structure to run in O(E α(V)) time, where α is the extremely slowly growing inverse of the single-valued Ackermann function.
Read more about this topic: Kruskal's Algorithm
Famous quotes containing the word complexity:
“In times like ours, where the growing complexity of life leaves us barely the time to read the newspapers, where the map of Europe has endured profound rearrangements and is perhaps on the brink of enduring yet others, where so many threatening and new problems appear everywhere, you will admit it may be demanded of a writer that he be more than a fine wit who makes us forget in idle and byzantine discussions on the merits of pure form ...”
—Marcel Proust (18711922)
“It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.”
—Elaine Heffner (20th century)
“The price we pay for the complexity of life is too high. When you think of all the effort you have to put intelephonic, technological and relationalto alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.”
—Jean Baudrillard (b. 1929)