Krull Dimension - Explanation

Explanation

We say that a strict chain of inclusions of prime ideals of the form: is of length n. That is, it is counting the number of strict inclusions, not the number of primes, although these only differ by 1. Given a prime, we define the height of, written to be the supremum of the set

We define the Krull dimension of to be the supremum of the heights of all of its primes.

Nagata gave an example of a ring that has infinite Krull dimension even though every prime ideal has finite height. Nagata also gave an example of a Noetherian ring where not every chain can be extended to a maximal chain. Rings in which every chain of prime ideals can be extended to a maximal chain are known as catenary rings.

Read more about this topic:  Krull Dimension

Famous quotes containing the word explanation:

    How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existence—I have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.
    Rutherford Birchard Hayes (1822–1893)

    Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called “silent poetry,” and poetry “speaking painting.” The laws of each art are convertible into the laws of every other.
    Ralph Waldo Emerson (1803–1882)

    Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the “correct” explanation is not quite so important as conveying a willingness to discuss the subject. Become an “askable parent.”
    Ruth Formanek (20th century)