Kolmogorov Complexity - Kolmogorov Randomness

Kolmogorov randomness – also called algorithmic randomness – defines a string (usually of bits) as being random if and only if it is shorter than any computer program that can produce that string. To make this precise, a universal computer (or universal Turing machine) must be specified, so that "program" means a program for this universal machine. A random string in this sense is "incompressible" in that it is impossible to "compress" the string into a program whose length is shorter than the length of the string itself. A counting argument is used to show that, for any universal computer, there is at least one algorithmically random string of each length. Whether any particular string is random, however, depends on the specific universal computer that is chosen.

This definition can be extended to define a notion of randomness for infinite sequences from a finite alphabet. These algorithmically random sequences can be defined in three equivalent ways. One way uses an effective analogue of measure theory; another uses effective martingales. The third way defines an infinite sequence to be random if the prefix-free Kolmogorov complexity of its initial segments grows quickly enough - there must be a constant c such that the complexity of an initial segment of length n is always at least nc. This definition, unlike the definition of randomness for a finite string, is not affected by which universal machine is used to define prefix-free Kolmogorov complexity.

Read more about this topic:  Kolmogorov Complexity