Introduction
The ordinary arithmetical operations of addition, multiplication and exponentiation are naturally extended into a sequence of hyperoperations as follows.
Multiplication by a natural number is defined as iterated addition:
For example,
Exponentiation for a natural power is defined as iterated multiplication, which Knuth denoted by a single up-arrow:
For example,
To extend the sequence of operations beyond exponentiation, Knuth defined a “double arrow” operator to denote iterated exponentiation (tetration):
For example,
Here and below evaluation is to take place from right to left, as Knuth's arrow operators (just like exponentiation) are defined to be right-associative.
According to this definition,
- etc.
This already leads to some fairly large numbers, but Knuth extended the notation. He went on to define a “triple arrow” operator for iterated application of the “double arrow” operator (also known as pentation):
followed by a 'quadruple arrow' operator (also known as hexation):
and so on. The general rule is that an -arrow operator expands into a right-associative series of -arrow operators. Symbolically,
Examples:
The notation is commonly used to denote with n arrows.
Read more about this topic: Knuth's Up-arrow Notation
Famous quotes containing the word introduction:
“For better or worse, stepparenting is self-conscious parenting. Youre damned if you do, and damned if you dont.”
—Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)
“Such is oftenest the young mans introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.”
—Henry David Thoreau (18171862)
“For the introduction of a new kind of music must be shunned as imperiling the whole state; since styles of music are never disturbed without affecting the most important political institutions.”
—Plato (c. 427347 B.C.)