Knot Theory

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knots can be described in various ways. Given a method of description, however, there may be more than one description that represents the same knot. For example, a common method of describing a knot is a planar diagram called a knot diagram. Any given knot can be drawn in many different ways using a knot diagram. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot.

A complete algorithmic solution to this problem exists, which has unknown complexity. In practice, knots are often distinguished by using a knot invariant, a "quantity" which is the same when computed from different descriptions of a knot. Important invariants include knot polynomials, knot groups, and hyperbolic invariants.

The original motivation for the founders of knot theory was to create a table of knots and links, which are knots of several components entangled with each other. Over six billion knots and links have been tabulated since the beginnings of knot theory in the 19th century.

To gain further insight, mathematicians have generalized the knot concept in several ways. Knots can be considered in other three-dimensional spaces and objects other than circles can be used; see knot (mathematics). Higher dimensional knots are n-dimensional spheres in m-dimensional Euclidean space.

The generalized Poincaré conjecture states that Every simply connected, closed n-manifold is homeomorphic to the n-sphere. Every n-dimensional knot can therefore be stretched into a trivial n-sphere. N-dimensional knots are generally not decomposable into 2-dimensional knots, though they can be projected to superpositions of lower-dimensional knots.

Read more about Knot Theory:  History, Knot Equivalence, Knot Diagrams, Knot Invariants, Higher Dimensions, Adding Knots, Tabulating Knots

Famous quotes containing the words knot and/or theory:

    Come Sleep! Oh Sleep, the certain knot of peace,
    The baiting-place of wit, the balm of woe,
    The poor man’s wealth, the prisoner’s release,
    Th’indifferent judge between the high and low.
    Sir Philip Sidney (1554–1586)

    Freud was a hero. He descended to the “Underworld” and met there stark terrors. He carried with him his theory as a Medusa’s head which turned these terrors to stone.
    —R.D. (Ronald David)