Killing Form - Matrix Elements

Matrix Elements

Given a basis ei of the Lie algebra g, the matrix elements of the Killing form are given by

where Iad is the Dynkin index of the adjoint representation of g. Here

in Einstein summation notation and so we can write

where the are the structure coefficients of the Lie algebra. The Killing form is the simplest 2-tensor that can be formed from the structure constants.

In the above indexed definition, we are careful to distinguish upper and lower indexes (co- and contra-variant indexes). This is because, in many cases, the Killing form can be used as a metric tensor on a manifold, in which case the distinction becomes an important one for the transformation properties of tensors. When the Lie algebra is semisimple, its Killing form is nondegenerate, and hence can be used as a metric tensor to raise and lower indexes. In this case, it is always possible to choose a basis for g such that the structure constants with all upper indexes are completely antisymmetric.

The Killing form for some Lie algebras g are (for X, Y in g):

g B(X, Y)
gl(n, R) 2n tr(XY) − 2 tr(X)tr(Y)
sl(n, R) 2n tr(XY)
su(n) 2n tr(XY)
so(n, R) (n−2) tr(XY)
so(n) (n−2) tr(XY)
sp(n, R) (2n+2) tr(XY)
sp(n, C) (2n+2) tr(XY)

Read more about this topic:  Killing Form

Famous quotes containing the words matrix and/or elements:

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)

    The popularity of that baby-faced boy, who possessed not even the elements of a good actor, was a hallucination in the public mind, and a disgrace to our theatrical history.
    Thomas Campbell (1777–1844)