Definition
Consider a Lie algebra g over a field K. Every element x of g defines the adjoint endomorphism ad(x) (also written as adx) of g with the help of the Lie bracket, as
- ad(x)(y) = .
Now, supposing g is of finite dimension, the trace of the composition of two such endomorphisms defines a symmetric bilinear form
- B(x, y) = trace(ad(x)ad(y)),
with values in K, the Killing form on g.
Read more about this topic: Killing Form
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)