Khinchin's Constant - Series Expressions

Series Expressions

Khinchin's constant may be expressed as a rational zeta series in the form

\log K_0 = \frac{1}{\log 2} \sum_{n=1}^\infty
\frac {\zeta (2n)-1}{n} \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k}

or, by peeling off terms in the series,

\log K_0 = \frac{1}{\log 2} \left[
\sum_{k=3}^N \log \left(\frac{k-1}{k} \right) \log \left(\frac{k+1}{k} \right)
+ \sum_{n=1}^\infty
\frac {\zeta (2n,N)}{n} \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k}
\right]

where N is an integer, held fixed, and ζ(s, n) is the Hurwitz zeta function. Both series are strongly convergent, as ζ(n) − 1 approaches zero quickly for large n. An expansion may also be given in terms of the dilogarithm:

\log K_0 = \log 2 + \frac{1}{\log 2} \left[
\mbox{Li}_2 \left( \frac{-1}{2} \right) +
\frac{1}{2}\sum_{k=2}^\infty (-1)^k \mbox{Li}_2 \left( \frac{4}{k^2} \right)
\right].

Read more about this topic:  Khinchin's Constant

Famous quotes containing the words series and/or expressions:

    I thought I never wanted to be a father. A child seemed to be a series of limitations and responsibilities that offered no reward. But when I experienced the perfection of fatherhood, the rest of the world remade itself before my eyes.
    Kent Nerburn (20th century)

    Those expressions are omitted which can not with propriety be read aloud in the family.
    Thomas Bowdler (1754–1825)