Relation To Other Exact Solutions
The Kerr vacuum is a particular example of a stationary axially symmetric vacuum solution to the Einstein field equation. The family of all stationary axially symmetric vacuum solutions to the Einstein field equation are the Ernst vacuums.
The Kerr solution is also related to various non-vacuum solutions which model black holes. For example, the Kerr–Newman electrovacuum models a (rotating) black hole endowed with an electric charge, while the Kerr–Vaidya null dust models a (rotating) hole with infalling electromagnetic radiation.
The special case of the Kerr metric yields the Schwarzschild metric, which models a nonrotating black hole which is static and spherically symmetric, in the Schwarzschild coordinates. (In this case, every Geroch moment but the mass vanishes.)
The interior of the Kerr vacuum, or rather a portion of it, is locally isometric to the Chandrasekhar–Ferrari CPW vacuum, an example of a colliding plane wave model. This is particularly interesting, because the global structure of this CPW solution is quite different from that of the Kerr vacuum, and in principle, an experimenter could hope to study the geometry of (the outer portion of) the Kerr interior by arranging the collision of two suitable gravitational plane waves.
Read more about this topic: Kerr Metric
Famous quotes containing the words relation to, relation, exact and/or solutions:
“To be a good enough parent one must be able to feel secure in ones parenthood, and ones relation to ones child...The security of the parent about being a parent will eventually become the source of the childs feeling secure about himself.”
—Bruno Bettelheim (20th century)
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—Honoré De Balzac (17991850)
“In the long-run every Government is the exact symbol of its People, with their wisdom and unwisdom; we have to say, Like People like Government.”
—Thomas Carlyle (17951881)
“Science fiction writers foresee the inevitable, and although problems and catastrophes may be inevitable, solutions are not.”
—Isaac Asimov (19201992)