Multipole Moments
Each asymptotically flat Ernst vacuum can be characterized by giving the infinite sequence of relativistic multipole moments, the first two of which can be interpreted as the mass and angular momentum of the source of the field. There are alternative formulations of relativistic multipole moments due to Hansen, Thorne, and Geroch, which turn out to agree with each other. The relativistic multipole moments of the Kerr vacuum were computed by Hansen; they turn out to be
Thus, the special case of the Schwarzschild vacuum (α=0) gives the "monopole point source" of general relativity.
Warning: do not confuse these relativistic multipole moments with the Weyl multipole moments, which arise from treating a certain metric function (formally corresponding to Newtonian gravitational potential) which appears the Weyl-Papapetrou chart for the Ernst family of all stationary axisymmetric vacuums solutions using the standard euclidean scalar multipole moments. In a sense, the Weyl moments only (indirectly) characterize the "mass distribution" of an isolated source, and they turn out to depend only on the even order relativistic moments. In the case of solutions symmetric across the equatorial plane the odd order Weyl moments vanish. For the Kerr vacuum solutions, the first few Weyl moments are given by
In particular, we see that the Schwarzschild vacuum has nonzero second order Weyl moment, corresponding to the fact that the "Weyl monopole" is the Chazy–Curzon vacuum solution, not the Schwarzschild vacuum solution, which arises from the Newtonian potential of a certain finite length uniform density thin rod.
In weak field general relativity, it is convenient to treat isolated sources using another type of multipole, which generalize the Weyl moments to mass multipole moments and momentum multipole moments, characterizing respectively the distribution of mass and of momentum of the source. These are multi-indexed quantities whose suitably symmetrized (anti-symmetrized) parts can be related to the real and imaginary parts of the relativistic moments for the full nonlinear theory in a rather complicated manner.
Perez and Moreschi have given an alternative notion of "monopole solutions" by expanding the standard NP tetrad of the Ernst vacuums in powers of r (the radial coordinate in the Weyl-Papapetrou chart). According to this formulation:
- the isolated mass monopole source with zero angular momentum is the Schwarzschild vacuum family (one parameter),
- the isolated mass monopole source with radial angular momentum is the Taub–NUT vacuum family (two parameters; not quite asymptotically flat),
- the isolated mass monopole source with axial angular momentum is the Kerr vacuum family (two parameters).
In this sense, the Kerr vacuums are the simplest stationary axisymmetric asymptotically flat vacuum solutions in general relativity.
Read more about this topic: Kerr Metric
Famous quotes containing the word moments:
“The dissenter is every human being at those moments of his life when he resigns momentarily from the herd and thinks for himself.”
—Archibald MacLeish (18921982)