Kerr Metric - Mathematical Form

Mathematical Form

The Kerr metric describes the geometry of spacetime in the vicinity of a mass M rotating with angular momentum J


c^{2} d\tau^{2} =
\left( 1 - \frac{r_{s} r}{\rho^{2}} \right) c^{2} dt^{2}
- \frac{\rho^{2}}{\Delta} dr^{2}
- \rho^{2} d\theta^{2} -

\left( r^{2} + \alpha^{2} + \frac{r_{s} r \alpha^{2}}{\rho^{2}} \sin^{2} \theta \right) \sin^{2} \theta \ d\phi^{2} + \frac{2r_{s} r\alpha \sin^{2} \theta }{\rho^{2}} \, c \, dt \, d\phi

where the coordinates are standard spherical coordinate system, and rs is the Schwarzschild radius


r_{s} = \frac{2GM}{c^{2}}

and where the length-scales α, ρ and Δ have been introduced for brevity


\alpha = \frac{J}{Mc}

\ \rho^{2} = r^{2} + \alpha^{2} \cos^{2} \theta

\ \Delta = r^{2} - r_{s} r + \alpha^{2}

In the non-relativistic limit where M (or, equivalently, rs) goes to zero, the Kerr metric becomes the orthogonal metric for the oblate spheroidal coordinates


c^{2} d\tau^{2} =
c^{2} dt^{2}
- \frac{\rho^{2}}{r^{2} + \alpha^{2}} dr^{2}
- \rho^{2} d\theta^{2}
- \left( r^{2} + \alpha^{2} \right) \sin^{2}\theta d\phi^{2}

which are equivalent to the Boyer-Lindquist coordinates

Read more about this topic:  Kerr Metric

Famous quotes related to mathematical form:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)