Kernel (set Theory) - in Algebraic Structures

In Algebraic Structures

If X and Y are algebraic structures of some fixed type (such as groups, rings, or vector spaces), and if the function f from X to Y is a homomorphism, then ker f will be a subalgebra of the direct product X × X. Subalgebras of X × X that are also equivalence relations (called congruence relations) are important in abstract algebra, because they define the most general notion of quotient algebra. Thus the coimage of f is a quotient algebra of X much as the image of f is a subalgebra of Y; and the bijection between them becomes an isomorphism in the algebraic sense as well (this is the most general form of the first isomorphism theorem in algebra). The use of kernels in this context is discussed further in the article Kernel (algebra).

Read more about this topic:  Kernel (set Theory)

Famous quotes containing the words algebraic and/or structures:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    If there are people who feel that God wants them to change the structures of society, that is something between them and their God. We must serve him in whatever way we are called. I am called to help the individual; to love each poor person. Not to deal with institutions. I am in no position to judge.
    Mother Teresa (b. 1910)