Subspace Properties
The null space of an m × n matrix is a subspace of Rn. That is, the set Null(A) has the following three properties:
- Null(A) always contains the zero vector, since A0 = 0.
- If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
- If x ∈ Null(A) and c is a scalar, then c x ∈ Null(A), since (cA)x = c(Ax).
Read more about this topic: Kernel (matrix)
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)