Null Space of A Linear Map
If V and W are vector spaces, the null space (or kernel) of a linear transformation T: V → W is the set of all vectors in V that map to zero:
If the linear map is represented by a matrix, then the kernel of the map is precisely the null space of the matrix.
Read more about this topic: Kernel (matrix)
Famous quotes containing the words null, space and/or map:
“A strong person makes the law and custom null before his own will.”
—Ralph Waldo Emerson (18031882)
“Oh, my. Id forgotten how much I hate space travel.”
—George Lucas (b. 1944)
“You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.”
—Bill Bryson (b. 1951)