Definition
The kernel of an m × n matrix A with coefficients in a field K (typically the field of the real numbers or of the complex numbers) is the set
where 0 denotes the zero vector with m components. The matrix equation Ax = 0 is equivalent to a homogeneous system of linear equations:
From this viewpoint, the null space of A is the same as the solution set to the homogeneous system.
Read more about this topic: Kernel (matrix)
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)