Kernel (matrix) - Basis

Basis

A basis of the null space of a matrix may be computed by Gaussian elimination.

For this purpose, given an m × n matrix A, we construct first the row augmented matrix where I is the n × n identity matrix.

Computing its column echelon form by Gaussian elimination (or any other available method), we get a matrix A basis of the null space of A consists in the non zero columns of C such that the corresponding column of B is a zero column.

In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero.

For example, suppose that

A=\left[ \begin{array}{cccccc}
1 & 0 & -3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0 \end{array} \,\right].

Then

 \left=
\left[\begin{array}{cccccc}
1 & 0 & -3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline\\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right].

Putting the upper part in column echelon form by column operations on the whole matrix gives

 \left=
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline\\
1 & 0 & 0 & 3 & -2 & 8 \\
0 & 1 & 0 & -5 & 1 & -4 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -7 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right].

The last three columns of B are zero columns. Therefore, the three last vectors of C,

\left,\;
\left,\;
\left

are a basis of the null space of A.

Read more about this topic:  Kernel (matrix)

Famous quotes containing the word basis:

    Far from being the basis of the good society, the family, with its narrow privacy and tawdry secrets, is the source of all our discontents.
    Sir Edmund Leach (20th century)

    Reason looks at necessity as the basis of the world; reason is able to turn chance in your favor and use it. Only by having reason remain strong and unshakable can we be called a god of the earth.
    Johann Wolfgang Von Goethe (1749–1832)

    Self-alienation is the source of all degradation as well as, on the contrary, the basis of all true elevation. The first step will be a look inward, an isolating contemplation of our self. Whoever remains standing here proceeds only halfway. The second step must be an active look outward, an autonomous, determined observation of the outer world.
    Novalis [Friedrich Von Hardenberg] (1772–1801)