Relationship To Algebraic Kernels
Universal algebra defines a notion of kernel for homomorphisms between two algebraic structures of the same kind. This concept of kernel measures how far the given homomorphism is from being injective. There is some overlap between this algebraic notion and the categorical notion of kernel since both generalize the situation of groups and modules mentioned above. In general, however, the universal-algebraic notion of kernel is more like the category-theoretic concept of kernel pair. In particular, kernel pairs can be used to interpret kernels in monoid theory or ring theory in category-theoretic terms.
Read more about this topic: Kernel (category Theory)
Famous quotes containing the words relationship to, relationship and/or algebraic:
“Film music should have the same relationship to the film drama that somebodys piano playing in my living room has to the book I am reading.”
—Igor Stravinsky (18821971)
“Our mother gives us our earliest lessons in loveand its partner, hate. Our fatherour second otherMelaborates on them. Offering us an alternative to the mother-baby relationship . . . presenting a masculine model which can supplement and contrast with the feminine. And providing us with further and perhaps quite different meanings of lovable and loving and being loved.”
—Judith Viorst (20th century)
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)