Kernel (category Theory) - Relationship To Algebraic Kernels

Relationship To Algebraic Kernels

Universal algebra defines a notion of kernel for homomorphisms between two algebraic structures of the same kind. This concept of kernel measures how far the given homomorphism is from being injective. There is some overlap between this algebraic notion and the categorical notion of kernel since both generalize the situation of groups and modules mentioned above. In general, however, the universal-algebraic notion of kernel is more like the category-theoretic concept of kernel pair. In particular, kernel pairs can be used to interpret kernels in monoid theory or ring theory in category-theoretic terms.

Read more about this topic:  Kernel (category Theory)

Famous quotes containing the words relationship to, relationship and/or algebraic:

    Women, because of their colonial relationship to men, have to fight for their own independence. This fight for our own independence will lead to the growth and development of the revolutionary movement in this country. Only the independent woman can be truly effective in the larger revolutionary struggle.
    Women’s Liberation Workshop, Students for a Democratic Society, Radical political/social activist organization. “Liberation of Women,” in New Left Notes (July 10, 1967)

    If one could be friendly with women, what a pleasure—the relationship so secret and private compared with relations with men. Why not write about it truthfully?
    Virginia Woolf (1882–1941)

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)