Kernel (category Theory) - Examples

Examples

Kernels are familiar in many categories from abstract algebra, such as the category of groups or the category of (left) modules over a fixed ring (including vector spaces over a fixed field). To be explicit, if f : XY is a homomorphism in one of these categories, and K is its kernel in the usual algebraic sense, then K is a subalgebra of X and the inclusion homomorphism from K to X is a kernel in the categorical sense.

Note that in the category of monoids, category-theoretic kernels exist just as for groups, but these kernels don't carry sufficient information for algebraic purposes. Therefore, the notion of kernel studied in monoid theory is slightly different. Conversely, in the category of rings, there are no kernels in the category-theoretic sense; indeed, this category does not even have zero morphisms. Nevertheless, there is still a notion of kernel studied in ring theory. See Relationship to algebraic kernels below for the resolution of this paradox.

In the category of pointed topological spaces, if f :XY is a continuous pointed map, then the preimage of the distinguished point, K, is a subspace of X. The inclusion map of K into X is the categorical kernel of f.


Read more about this topic:  Kernel (category Theory)

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)