Definition
Let C be a category. In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if f : X → Y is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y. In symbols:
- ker(f) = eq(f, 0XY)
To be more explicit, the following universal property can be used. A kernel of f is any morphism k : K → X such that:
- f k is the zero morphism from K to Y;
- Given any morphism k′ : K′ → X such that f k′ is the zero morphism, there is a unique morphism u : K′ → K such that k u = k'.
Note that in many concrete contexts, one would refer to the object K as the "kernel", rather than the morphism k. In those situations, K would be a subset of X, and that would be sufficient to reconstruct k as an inclusion map; in the nonconcrete case, in contrast, we need the morphism k to describe how K is to be interpreted as a subobject of X. In any case, one can show that k is always a monomorphism (in the categorical sense of the word). One may prefer to think of the kernel as the pair (K,k) rather than as simply K or k alone.
Not every morphism needs to have a kernel, but if it does, then all its kernels are isomorphic in a strong sense: if k : K → X and l : L → X are kernels of f : X → Y, then there exists a unique isomorphism φ : K → L such that l o φ = k.
Read more about this topic: Kernel (category Theory)
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)