Kernel (algebra) - Algebras With Nonalgebraic Structure

Algebras With Nonalgebraic Structure

Sometimes algebras are equipped with a nonalgebraic structure in addition to their algebraic operations. For example, one may consider topological groups or topological vector spaces, with are equipped with a topology. In this case, we would expect the homomorphism f to preserve this additional structure; in the topological examples, we would want f to be a continuous map. The process may run into a snag with the quotient algebras, which may not be well-behaved. In the topological examples, we can avoid problems by requiring that topological algebraic structures be Hausdorff (as is usually done); then the kernel (however it is constructed) will be a closed set and the quotient space will work fine (and also be Hausdorff).

Read more about this topic:  Kernel (algebra)

Famous quotes containing the word structure:

    A committee is organic rather than mechanical in its nature: it is not a structure but a plant. It takes root and grows, it flowers, wilts, and dies, scattering the seed from which other committees will bloom in their turn.
    C. Northcote Parkinson (1909–1993)