Kernel (algebra) - Algebras With Nonalgebraic Structure

Algebras With Nonalgebraic Structure

Sometimes algebras are equipped with a nonalgebraic structure in addition to their algebraic operations. For example, one may consider topological groups or topological vector spaces, with are equipped with a topology. In this case, we would expect the homomorphism f to preserve this additional structure; in the topological examples, we would want f to be a continuous map. The process may run into a snag with the quotient algebras, which may not be well-behaved. In the topological examples, we can avoid problems by requiring that topological algebraic structures be Hausdorff (as is usually done); then the kernel (however it is constructed) will be a closed set and the quotient space will work fine (and also be Hausdorff).

Read more about this topic:  Kernel (algebra)

Famous quotes containing the word structure:

    I’m a Sunday School teacher, and I’ve always known that the structure of law is founded on the Christian ethic that you shall love the Lord your God and your neighbor as yourself—a very high and perfect standard. We all know the fallibility of man, and the contentions in society, as described by Reinhold Niebuhr and many others, don’t permit us to achieve perfection.
    Jimmy Carter (James Earl Carter, Jr.)