Kepler's Laws of Planetary Motion - Computing Position As A Function of Time

Computing Position As A Function of Time

Kepler used his two first laws for computing the position of a planet as a function of time. His method involves the solution of a transcendental equation called Kepler's equation.

The procedure for calculating the heliocentric polar coordinates (r,θ) to a planetary position as a function of the time t since perihelion, and the mean motion n = 2π/P, is the following four steps.

1. Compute the mean anomaly
2. Compute the eccentric anomaly E by solving Kepler's equation:
3. Compute the true anomaly θ by the equation:
4. Compute the heliocentric distance r from the first law:

The important special case of circular orbit, ε = 0, gives simply θ = E = M. Because the uniform circular motion was considered to be normal, a deviation from this motion was considered an anomaly.

The proof of this procedure is shown below.

Read more about this topic:  Kepler's Laws Of Planetary Motion

Famous quotes containing the words position, function and/or time:

    Beauty ought to look a little surprised: it is the emotion that best suits her face.... The beauty who does not look surprised, who accepts her position as her due—she reminds us too much of a prima donna.
    —E.M. (Edward Morgan)

    The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.
    Clarence Lewis (1883–1964)

    The imagination of man is naturally sublime, delighted with whatever is remote and extraordinary, and running, without control, into the most distant parts of space and time in order to avoid the objects, which custom has rendered too familiar to it.
    David Hume (1711–1776)