Objectives and Methods
The scientific objective of Kepler is to explore the structure and diversity of planetary systems. This spacecraft observes a large sample of stars to achieve several key goals:
- To determine how many Earth-size and larger planets there are in or near the habitable zone (often called "Goldilocks planets") of a wide variety of spectral types of stars.
- To determine the range of size and shape of the orbits of these planets.
- To estimate how many planets there are in multiple-star systems.
- To determine the range of orbit size, brightness, size, mass and density of short-period giant planets.
- To identify additional members of each discovered planetary system using other techniques.
- Determine the properties of those stars that harbor planetary systems.
Most of the extrasolar planets previously detected by other projects were giant planets, mostly the size of Jupiter and bigger. Kepler is designed to look for planets 30 to 600 times less massive, closer to the order of Earth's mass (Jupiter is 318 times more massive than Earth). The method used, the transit method, involves observing repeated transit of planets in front of their stars, which causes a slight reduction in the star's apparent magnitude, on the order of 0.01% for an Earth-size planet. The degree of this reduction in brightness can be used to deduce the diameter of the planet, and the interval between transits can be used to deduce the planet's orbital period, from which estimates of its orbital semi-major axis (using Kepler's laws) and its temperature (using models of stellar radiation) can be calculated.
The probability of a random planetary orbit being along the line-of-sight to a star is the diameter of the star divided by the diameter of the orbit. For an Earth-like planet at 1 AU transiting a Sol-like star the probability is 0.465%, or about 1 in 215. At 0.72 AU (the orbital distance of Venus) the probability is slightly larger, at 0.65%; such planets could be Earth-like if the host star is a late G-type star such as Tau Ceti. In addition, because planets in a given system tend to orbit in similar planes, the possibility of multiple detections around a single star is actually rather high. For instance, if a Kepler-like mission conducted by aliens observed Earth transiting the Sun, there is a 12% chance that it would also see Venus transiting.
Kepler's 115-deg2 field of view gives it a much higher probability of detecting Earth-like planets than the Hubble Space Telescope, which has a field of view of only 10 sq. arc-minutes. Moreover, Kepler is dedicated to detecting planetary transits, while the Hubble Space Telescope is used to address a wide range of scientific questions, and rarely looks continuously at just one starfield. Of the approximately half-million stars in Kepler's field of view, around 150,000 stars were selected for observation, and they are observed simultaneously, with the spacecraft measuring variations in their brightness every 30 minutes. This provides a better chance for seeing a transit. In addition, the 1-in-215 probability means that if 100% of stars observed had the same diameter as the Sun, and each had one Earth-like terrestrial planet in an orbit identical to that of the Earth, Kepler would find about 465; but if only 10% of stars observed were such, then it would find about 46. The mission is well suited to determine the frequency of Earth-like planets orbiting other stars.
Since Kepler must see at least three transits to confirm that the dimming of a star was caused by a transiting planet, and since larger planets give a signal that is easier to check, scientists expected the first reported results to be larger Jupiter-size planets in tight orbits. The first of these were reported after only a few months of operation. Smaller planets, and planets farther from their sun will take longer, and discovering planets comparable to Earth is expected to take three years or longer.
Once Kepler has detected a transit-like signature, it is necessary to rule out false positives with follow-up tests such as doppler spectroscopy. Although Kepler was designed for photometry it turns out that it is capable of astrometry and such measurements can help confirm or rule out planet candidates.
In addition to transits, planets orbiting around their stars undergo reflected light variations changes – like the Moon, they go through phases from full to new and back again. Since Kepler cannot resolve the planet from the star, it sees only the combined light, and the brightness of the host star seems to change over each orbit in a periodic manner. Although the effect is small – the photometric precision required to see a close-in giant planet is about the same as to detect an Earth-sized planet in transit across a solar-type star – Jupiter-sized planets are detectable by sensitive space telescopes such as Kepler. In the long run, this method may help find more planets than the transit method, because the reflected light variation with orbital phase is largely independent of the planet's orbital inclination, and does not require the planet to pass in front of the disk of the star. In addition, the phase function of a giant planet is also a function of its thermal properties and atmosphere, if any. Therefore, the phase curve may constrain other planetary properties, such as the particle size distribution of the atmospheric particles.
Data collected by Kepler is also being used for studying variable stars of various types and performing asteroseismology, particularly on stars showing solar-like oscillations.
Read more about this topic: Kepler (spacecraft)
Famous quotes containing the words objectives and/or methods:
“Along the journey we commonly forget its goal. Almost every vocation is chosen and entered upon as a means to a purpose but is ultimately continued as a final purpose in itself. Forgetting our objectives is the most frequent stupidity in which we indulge ourselves.”
—Friedrich Nietzsche (18441900)
“I think it is a wise course for laborers to unite to defend their interests.... I think the employer who declines to deal with organized labor and to recognize it as a proper element in the settlement of wage controversies is behind the times.... Of course, when organized labor permits itself to sympathize with violent methods or undue duress, it is not entitled to our sympathy.”
—William Howard Taft (18571930)