The Kepler conjecture, named after the 17th-century German astronomer Johannes Kepler, is a mathematical conjecture about sphere packing in three-dimensional Euclidean space. It says that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements. The density of these arrangements is slightly greater than 74%.
In 1998 Thomas Hales, following an approach suggested by Fejes Tóth (1953), announced that he had a proof of the Kepler conjecture. Hales' proof is a proof by exhaustion involving the checking of many individual cases using complex computer calculations. Referees have said that they are "99% certain" of the correctness of Hales' proof, so the Kepler conjecture is now very close to being accepted as a theorem.
Read more about Kepler Conjecture: Background, Origins, Nineteenth Century, Twentieth Century, Hales' Proof, A Formal Proof, Related Problems
Famous quotes containing the word conjecture:
“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)