Work
He was professor of physical chemistry at Kyoto University from 1951 to 1982, president of the Kyoto Institute of Technology between 1982 and 1988, and a member of the International Academy of Quantum Molecular Science and honorary member of the International Academy of Science. He was also director of the Institute for Fundamental Chemistry from 1988 till his death. As well as President of the Chemical Society in Japan from 1983-84, receiving multiple awards aside from his Nobel Prize such as; Japan Academy Medal in 1962, Person of Culture Merits in 1981, Imperial Honour of Grand Cordon of the Order of the Rising Sun in 1988, with many other awards not quite as prestigious.
In 1952, Fukui with his young collaborators T. Yonezawa and H. Shingu presented his molecular orbital theory of reactivity in aromatic hydrocarbons, which appeared in the Journal of Chemical Physics. At that time, his concept failed to garner adequate attention among chemists. Fukui observed in his Nobel lecture in 1981 that his original paper 'received a number of controversial comments. This was in a sense understandable, because for lack of my experiential ability, the theoretical foundation for this conspicuous result was obscure or rather improperly given.'
The frontier orbitals concept came to be recognized following the 1965 publication by Robert B. Woodward and Roald Hoffmann of the Woodward-Hoffmann stereoselection rules, which could predict the reaction rates between two reactants. These rules, depicted in diagrams, explain why some pairs react easily while other pairs do not. The basis for these rules lies in the symmetry properties of the molecules and especially in the disposition of their electrons. Fukui had acknowledged in his Nobel lecture that, 'It is only after the remarkable appearance of the brilliant work by Woodward and Hoffmann that I have become fully aware that not only the density distribution but also the nodal property of the particular orbitals have significance in such a wide variety of chemical reactions.'
What has been striking in Fukui's significant contributions is that he developed his ideas before chemists had access to large computers for modeling. Apart from exploring the theory of chemical reactions, Fukui's contributions to chemistry also include the statistical theory of gelation, organic synthesis by inorganic salts and polymerization kinetics.
In an interview to New Scientist magazine in 1985, Fukui had been highly critical on the practices adopted in Japanese universities and industries to foster science. He noted, "Japanese universities have a chair system that is a fixed hierarchy. This has its merits when trying to work as a laboratory on one theme. But if you want to do original work you must start young, and young people are limited by the chair system. Even if students cannot become assistant professors at an early age they should be encouraged to do original work." Fukui also admonished Japanese industrial research stating, "Industry is more likely to put its research effort into its daily business. It is very difficult for it to become involved in pure chemistry. There is a need to encourage long-range research, even if we don't know its goal and if its application is unknown." In another interview with The Chemical Intelligencer he further elaborates on his criticism by saying, "As is known worldwide, Japan has tried to catch up with the western countries since the beginning of this century by importing science from them." Japan is, in a sense, relatively new to fundamental science as a part of its society and the lack of originality ability, and funding which the western countries have more advantages in hurt the country in fundamental science. Although, he has also stated that it is improving in Japan, especially funding for fundamental science as it has seen a steady increase for years.
Read more about this topic: Kenichi Fukui
Famous quotes containing the word work:
“Say what you will, making marriage work is a womans business. The institution was invented to do her homage; it was contrived for her protection. Unless she accepts it as suchas a beautiful, bountiful, but quite unequal associationthe going will be hard indeed.”
—Phyllis McGinley (19051978)
“I do not want to be covetous, but I think I speak the minds of many a wife and mother when I say I would willingly work as hard as possible all day and all night, if I might be sure of a small profit, but have worked hard for twenty-five years and have never known what it was to receive a financial compensation and to have what was really my own.”
—Emma Watrous, U.S. inventor. As quoted in Feminine Ingenuity, ch. 8, by Anne L. MacDonald (1992)
“He does not go to the dictionary, the word-book, but to the word-manufactory itself, and has made endless work for the lexicographers.”
—Henry David Thoreau (18171862)