General Properties
- Property (T) is preserved under quotients: if G has property (T) and H is a quotient group of G then H has property (T). Equivalently, if a homomorphic image of a group G does not have property (T) then G itself does not have property (T).
- If G has property (T) then G/ is compact.
- Any countable discrete group with property (T) is finitely generated.
- An amenable group which has property (T) is necessarily compact. Amenability and property (T) are in a rough sense opposite: they make almost invariant vectors easy or hard to find.
- Kazhdan's theorem: If Γ is a lattice in a Lie group G then Γ has property (T) if and only if G has property (T). Thus for n ≥ 3, the special linear group SLn(Z) has property (T).
Read more about this topic: Kazhdan's Property (T)
Famous quotes containing the words general and/or properties:
“That sort of half sigh, which, accompanied by two or three slight nods of the head, is pitys small change in general society.”
—Charles Dickens (18121870)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)