Kater's Solution
However, in Horologium Oscillatorium, Huygens had also proved that the pivot point and the center of oscillation were interchangeable. That is, if any pendulum is suspended upside down from its center of oscillation, it has the same period of swing, and the new center of oscillation is the old pivot point. The distance between these two conjugate points was equal to the length of a simple pendulum with the same period.
As part of a committee appointed by the Royal Society in 1816 to reform British measures, Kater had been contracted by the House of Commons to determine accurately the length of the seconds pendulum in London. He realized Huygens principle could be used to find the center of oscillation, and so the length L, of a rigid (compound) pendulum. If a pendulum were hung upside down from a second pivot point which could be adjusted up and down on the pendulum's rod, and the second pivot were adjusted until the pendulum had the same period as it did when swinging right side up from the first pivot, the second pivot would be at the center of oscillation, and the distance between the two pivot points would be L.
Kater wasn't the first to have this idea. French mathematician Gaspard de Prony first proposed a reversible pendulum in 1800, but his work was not published till 1889. In 1811 Friedrich Bohnenberger again discovered it, but Kater independently invented it and was first to put it in practice.
Read more about this topic: Kater's Pendulum
Famous quotes containing the word solution:
“Give a scientist a problem and he will probably provide a solution; historians and sociologists, by contrast, can offer only opinions. Ask a dozen chemists the composition of an organic compound such as methane, and within a short time all twelve will have come up with the same solution of CH4. Ask, however, a dozen economists or sociologists to provide policies to reduce unemployment or the level of crime and twelve widely differing opinions are likely to be offered.”
—Derek Gjertsen, British scientist, author. Science and Philosophy: Past and Present, ch. 3, Penguin (1989)