Underlying Dynamic System Model
The Kalman filters are based on linear dynamic systems discretized in the time domain. They are modelled on a Markov chain built on linear operators perturbed by Gaussian noise. The state of the system is represented as a vector of real numbers. At each discrete time increment, a linear operator is applied to the state to generate the new state, with some noise mixed in, and optionally some information from the controls on the system if they are known. Then, another linear operator mixed with more noise generates the observed outputs from the true ("hidden") state. The Kalman filter may be regarded as analogous to the hidden Markov model, with the key difference that the hidden state variables take values in a continuous space (as opposed to a discrete state space as in the hidden Markov model). Additionally, the hidden Markov model can represent an arbitrary distribution for the next value of the state variables, in contrast to the Gaussian noise model that is used for the Kalman filter. There is a strong duality between the equations of the Kalman Filter and those of the hidden Markov model. A review of this and other models is given in Roweis and Ghahramani (1999) and Hamilton (1994), Chapter 13.
In order to use the Kalman filter to estimate the internal state of a process given only a sequence of noisy observations, one must model the process in accordance with the framework of the Kalman filter. This means specifying the following matrices: Fk, the state-transition model; Hk, the observation model; Qk, the covariance of the process noise; Rk, the covariance of the observation noise; and sometimes Bk, the control-input model, for each time-step, k, as described below.
The Kalman filter model assumes the true state at time k is evolved from the state at (k−1) according to
where
- Fk is the state transition model which is applied to the previous state xk−1;
- Bk is the control-input model which is applied to the control vector uk;
- wk is the process noise which is assumed to be drawn from a zero mean multivariate normal distribution with covariance Qk.
At time k an observation (or measurement) zk of the true state xk is made according to
where Hk is the observation model which maps the true state space into the observed space and vk is the observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk.
The initial state, and the noise vectors at each step {x0, w1, ..., wk, v1 ... vk} are all assumed to be mutually independent.
Many real dynamical systems do not exactly fit this model. In fact, unmodelled dynamics can seriously degrade the filter performance, even when it was supposed to work with unknown stochastic signals as inputs. The reason for this is that the effect of unmodelled dynamics depends on the input, and, therefore, can bring the estimation algorithm to instability (it diverges). On the other hand, independent white noise signals will not make the algorithm diverge. The problem of separating between measurement noise and unmodelled dynamics is a difficult one and is treated in control theory under the framework of robust control.
Read more about this topic: Kalman Filter
Famous quotes containing the words underlying, dynamic, system and/or model:
“Mothers seem to be in subtle competition with teachers. There is always an underlying fear that teachers will do a better job than they have done with their child.... But mostly mothers feel that their areas of competence are very much similar to those of the teacher. In fact they feel they know their child better than anyone else and that the teacher doesnt possess any special field of authority or expertise.”
—Sara Lawrence Lightfoot (20th century)
“Knowledge about life is one thing; effective occupation of a place in life, with its dynamic currents passing through your being, is another.”
—William James (18421910)
“UG [universal grammar] may be regarded as a characterization of the genetically determined language faculty. One may think of this faculty as a language acquisition device, an innate component of the human mind that yields a particular language through interaction with present experience, a device that converts experience into a system of knowledge attained: knowledge of one or another language.”
—Noam Chomsky (b. 1928)
“It has to be acknowledged that in capitalist society, with its herds of hippies, originality has become a sort of fringe benefit, a mere convention, accepted obsolescence, the Beatnik model being turned in for the Hippie model, as though strangely obedient to capitalist laws of marketing.”
—Mary McCarthy (19121989)