Kalman Filter - Hybrid Kalman Filter

Hybrid Kalman Filter

Most physical systems are represented as continuous-time models while discrete-time measurements are frequently taken for state estimation via a digital processor. Therefore, the system model and measurement model are given by


\begin{align}
\dot{\mathbf{x}}(t) &= \mathbf{F}(t)\mathbf{x}(t)+\mathbf{B}(t)\mathbf{u}(t)+\mathbf{w}(t), &\mathbf{w}(t) &\sim N\bigl(\mathbf{0},\mathbf{Q}(t)\bigr) \\
\mathbf{z}_k &= \mathbf{H}_k\mathbf{x}_k+\mathbf{v}_k, &\mathbf{v}_k &\sim N(\mathbf{0},\mathbf{R}_k)
\end{align}

where

.
Initialize

\hat{\mathbf{x}}_{0|0}=E\bigl, \mathbf{P}_{0|0}=Var\bigl
Predict

\begin{align}
&\dot{\hat{\mathbf{x}}}(t) = \mathbf{F}(t) \hat{\mathbf{x}}(t) + \mathbf{B}(t) \mathbf{u}(t)
\text{, with }
\hat{\mathbf{x}}(t_{k-1}) = \hat{\mathbf{x}}_{k-1|k-1} \\
\Rightarrow
&\hat{\mathbf{x}}_{k|k-1} = \hat{\mathbf{x}}(t_k)\\
&\dot{\mathbf{P}}(t) = \mathbf{F}(t)\mathbf{P}(t)+\mathbf{P}(t)\mathbf{F}(t)^T+\mathbf{Q}(t)
\text{, with }
\mathbf{P}(t_{k-1}) = \mathbf{P}_{k-1|k-1}\\
\Rightarrow
&\mathbf{P}_{k|k-1} = \mathbf{P}(t_k)
\end{align}

The prediction equations are derived from those of continuous-time Kalman filter without update from measurements, i.e., . The predicted state and covariance are calculated respectively by solving a set of differential equations with the initial value equal to the estimate at the previous step.

Update

The update equations are identical to those of discrete-time Kalman filter.

Read more about this topic:  Kalman Filter