Kalman Filter - Fixed-lag Smoother

Fixed-lag Smoother

This section needs additional citations for verification.

The optimal fixed-lag smoother provides the optimal estimate of for a given fixed-lag using the measurements from to . It can be derived using the previous theory via an augmented state, and the main equation of the filter is the following:


	\begin{bmatrix}
		\hat{\textbf{x}}_{t|t} \\
		\hat{\textbf{x}}_{t-1|t} \\
		\vdots \\
		\hat{\textbf{x}}_{t-N+1|t} \\
	\end{bmatrix}
	=
	\begin{bmatrix}
		I \\
		0 \\
		\vdots \\
		0 \\
	\end{bmatrix}
	\hat{\textbf{x}}_{t|t-1}
	+
	\begin{bmatrix}
		0		& \ldots	& 0 \\
		I		& 0		& \vdots \\
		\vdots		& \ddots	& \vdots \\
		0		& \ldots	& I \\
	\end{bmatrix}
	\begin{bmatrix}
		\hat{\textbf{x}}_{t-1|t-1} \\
		\hat{\textbf{x}}_{t-2|t-1} \\
		\vdots \\
		\hat{\textbf{x}}_{t-N+1|t-1} \\
	\end{bmatrix}
	+
	\begin{bmatrix}
		K^{(0)} \\
		K^{(1)} \\
		\vdots \\
		K^{(N-1)} \\
	\end{bmatrix}
	y_{t|t-1}

where:

  • is estimated via a standard Kalman filter;
  • is the innovation produced considering the estimate of the standard Kalman filter;
  • the various with are new variables, i.e. they do not appear in the standard Kalman filter;
  • the gains are computed via the following scheme:

K^{(i)} =
P^{(i)} H^{T}
\left[
	H P H^{T} + R
\right]^{-1}
and

P^{(i)} =
P
\left[
	\left[
		F - K H
	\right]^{T}
\right]^{i}
where and are the prediction error covariance and the gains of the standard Kalman filter (i.e., ).

If the estimation error covariance is defined so that


P_{i} :=
E
\left[
	\left(
		\textbf{x}_{t-i} - \hat{\textbf{x}}_{t-i|t}
	\right)^{*}
	\left(
		\textbf{x}_{t-i} - \hat{\textbf{x}}_{t-i|t}
	\right)
	|
	z_{1} \ldots z_{t}
\right],

then we have that the improvement on the estimation of is given by:


P-P_{i} =
\sum_{j = 0}^{i}
\left[
	P^{(j)} H^{T}
	\left[
	H P H^{T} + R
	\right]^{-1}
	H \left( P^{(i)} \right)^{T}
\right]

Read more about this topic:  Kalman Filter

Famous quotes containing the word smoother:

    For the lips of a loose woman drip honey, and her speech is smoother than oil; but in the end she is bitter as wormwood, sharp as a two-edged sword.
    Bible: Hebrew, Proverbs 5:3.