The Kakeya needle problem asks whether there is a minimum area of a region D in the plane, in which a needle of unit length can be turned through 360°. This question was first posed, for convex regions, by Soichi Kakeya (1917).
He seems to have suggested that D of minimum area, without the convexity restriction, would be a three-pointed deltoid shape. The original problem was solved by Pál. The early history of this question has been subject to some discussion, though.
Read more about this topic: Kakeya Set
Famous quotes containing the words needle and/or problem:
“I would build my house of crystal,
With a solitary friend,
Where the cold cracks like a pistol
And the needle stands on end.”
—Robert Frost (18741963)
“The problem of the novelist who wishes to write about a mans encounter with God is how he shall make the experiencewhich is both natural and supernaturalunderstandable, and credible, to his reader. In any age this would be a problem, but in our own, it is a well- nigh insurmountable one. Todays audience is one in which religious feeling has become, if not atrophied, at least vaporous and sentimental.”
—Flannery OConnor (19251964)