Kakeya Set - Kakeya Needle Problem

The Kakeya needle problem asks whether there is a minimum area of a region D in the plane, in which a needle of unit length can be turned through 360°. This question was first posed, for convex regions, by Soichi Kakeya (1917).

He seems to have suggested that D of minimum area, without the convexity restriction, would be a three-pointed deltoid shape. The original problem was solved by Pál. The early history of this question has been subject to some discussion, though.

Read more about this topic:  Kakeya Set

Famous quotes containing the words needle and/or problem:

    I believe no gentleman would like to have his family affairs neglected because his wife was filling her head with crotchets and pothooks, and who, because she understood a few scraps of Latin, valued that more than minding her needle or providing her husband’s dinner.
    Sarah Fielding (1710–1768)

    What happened at Hiroshima was not only that a scientific breakthrough ... had occurred and that a great part of the population of a city had been burned to death, but that the problem of the relation of the triumphs of modern science to the human purposes of man had been explicitly defined.
    Archibald MacLeish (1892–1982)