The Period Map
There is a coarse moduli space for marked complex K3 surfaces, a non-Hausdorff smooth analytic space of dimension 20. There is a period mapping and Torelli theorem for complex K3 surfaces.
If M is the set of pairs consisting of a complex K3 surface S and a Kähler class of H1,1(S,R) then M is in a natural way a real analytic manifold of dimension 60. There is a refined period map from M to a space KΩ0 that is an isomorphism.The space of periods can be described explicitly as follows:
- L is the even unimodular lattice II3,19
- Ω is the Hermitian symmetric space consisting of the elements of the complex projective space of L⊗C that are represented by elements ω with (ω,ω)=0, (ω,ω^*)>0.
- KΩ is the set of pairs (κ, ) in (L⊗R, Ω) with (κ,E(ω))=0, (κ,κ)>0
- KΩ0 is the set of elements (κ, ) of KΩ such that (κd) ≠ 0 for every d in L with (d,d)=−2, (ω,d)=0.
Read more about this topic: K3 Surface
Famous quotes containing the words period and/or map:
“If there is any period one would desire to be born in, is it not the age of Revolution; when the old and the new stand side by side, and admit of being compared; when the energies of all men are searched by fear and by hope; when the historic glories of the old can be compensated by the rich possibilities of the new era?”
—Ralph Waldo Emerson (18031882)
“In my writing I am acting as a map maker, an explorer of psychic areas ... a cosmonaut of inner space, and I see no point in exploring areas that have already been thoroughly surveyed.”
—William Burroughs (b. 1914)