Julius Von Mayer - Mayer's Place in The History of Physics

Mayer's Place in The History of Physics

Mayer was the first person to state the law of the conservation of energy, one of the most fundamental tenets of modern day physics. The law of the conservation of energy states that the total mechanical energy of a system remains constant in any isolated system of objects that interact with each other only by way of forces that are conservative.

Mayer's first attempt at stating the conservation of energy was a paper he sent to Johann Christian Poggendorff's Annalen der Physik, in which he postulated a conservation of force (Erhaltungssatz der Kraft). However, owing to Mayer's lack of advanced training in physics, it contained some fundamental mistakes and was not published. Mayer continued to pursue the idea steadfastly and argued with the Tübingen physics professor Johann Gottlieb Nörremberg, who rejected his hypothesis. Nörremberg did, however, give Mayer a number of valuable suggestions on how the idea could be examined experimentally; for example, if kinetic energy transforms into heat energy, water should be warmed by vibration.

Mayer not only performed this demonstration, but determined also the quantitative factor of the transformation, calculating the mechanical equivalent of heat. The result of his investigations was published 1842 in the May edition of Justus von Liebig's Annalen der Chemie und Pharmacie. In his booklet Die organische Bewegung im Zusammenhang mit dem Stoffwechsel (The Organic Movement in Connection with the Metabolism, 1845) he specified the numerical value of the mechanical equivalent of heat: at first as 365 kgf·m/kcal, later as 425 kgf·m/kcal; the modern values are 4.184 kJ/kcal (426.6 kgf·m/kcal) for the thermochemical calorie and 4.1868 kJ/kcal (426.9 kgf·m/kcal) for the international steam table calorie.

This relation implies that, although work and heat are different forms of energy, they can be transformed into one another. This law is called the first law of the caloric theory and led to the formulation of the general principle of conservation of energy, definitively stated by Hermann von Helmholtz in 1847.

Read more about this topic:  Julius Von Mayer

Famous quotes containing the words mayer, place, history and/or physics:

    I had a long day’s work, starting at eight in the morning and ending after nine at night, but in those days [we] ... did not think of our day in terms of hours. We liked our work, we were proud to do it well, and I am afraid that we were very, very happy.
    —Louie Mayer (b. c. 1914)

    Man could not live if he were entirely impervious to sadness. Many sorrows can be endured only by being embraced, and the pleasure taken in them naturally has a somewhat melancholy character. So, melancholy is morbid only when it occupies too much place in life; but it is equally morbid for it to be wholly excluded from life.
    Emile Durkheim (1858–1917)

    We are told that men protect us; that they are generous, even chivalric in their protection. Gentlemen, if your protectors were women, and they took all your property and your children, and paid you half as much for your work, though as well or better done than your own, would you think much of the chivalry which permitted you to sit in street-cars and picked up your pocket- handkerchief?
    Mary B. Clay, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 3, by Susan B. Anthony and Ida Husted Harper (1902)

    Now the twitching stops. Now you are still. We are through with physiology and theology, physics begins.
    Alfred Döblin (1878–1957)