Julia Set

In the context of complex dynamics, a topic of mathematics, the Julia set and the Fatou set are two complementary sets defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values. Thus the behavior of the function on the Fatou set is 'regular', while on the Julia set its behavior is 'chaotic'.

The Julia set of a function ƒ is commonly denoted J(ƒ), and the Fatou set is denoted F(ƒ). These sets are named after the French mathematicians Gaston Julia and Pierre Fatou whose work began the study of complex dynamics during the early 20th century.

Read more about Julia Set:  Formal Definition, Equivalent Descriptions of The Julia Set, Properties of The Julia Set and Fatou Set, Examples, Quadratic Polynomials, Generalizations, The Potential Function and The Real Iteration Number, Field Lines, Distance Estimation

Famous quotes containing the words julia and/or set:

    Life must be something more than dilettante speculation.
    —Anna Julia Cooper (1859–1964)

    The grip that swung the ax in Illinois
    Was on the pen that set a people free.
    Edwin Markham (1852–1940)