Other Versions of Richard's Paradox
(A) The version given in Principia Mathematica by Whitehead and Russell is similar to Richard's original version, alas not quite as exact. Here only the digit 9 is replaced by the digit 0, such that identities like 1.000... = 0.999... can spoil the result.
(B) Berry's Paradox, first mentioned in the Principia Mathematica as fifth of seven paradoxes, is credited to Mr. G. G. Berry of the Bodleian Library. It uses the least integer not nameable in fewer than nineteen syllables; in fact, in English it denotes 111,777. But "the least integer not nameable in fewer than nineteen syllables" is itself a name consisting of eighteen syllables; hence the least integer not nameable in fewer than nineteen syllables can be named in eighteen syllables, which is a contradiction
(C) Berry's Paradox with letters instead of syllables is often related to the set of all natural numbers which can be defined by less than 100 (or any other large number) letters. As the natural numbers are a well-ordered set there must be the least number which cannot be defined by less than 100 letters. But this number was just defined by 65 letters including spaces.
(D) König's Paradox was also published in 1905 by Julius König. All real numbers which can be defined by a finite number of words form a subset of the real numbers. If the real numbers can be well-ordered, then there must be a first real number (according to this order) which cannot be defined by a finite number of words. But the first real number which cannot be defined by a finite number of words has just been defined by a finite number of words.
(E) The smallest natural number without interesting properties acquires an interesting property by this very lack of any interesting properties.
(F) A loan of the Paradox of Grelling and Nelson. The number of all finite definitions is countable. In lexical order we obtain a sequence of definitions D1, D2, D3, ... Now, it may happen that a definition defines its own number. This would be the case if D1 read "the smallest natural number". It may happen, that a definition does not describe its own number. This would be the case if D2 read "the smallest natural number". Also the sentence "this definition does not describe its number" is a finite definition. Let it be Dn. Is n described by Dn. If yes, then no, and if no, then yes. The dilemma is irresolvable. (This version is described in more detail in another article, Richard's paradox.)
Read more about this topic: Jules Richard
Famous quotes containing the words versions, richard and/or paradox:
“The assumption must be that those who can see value only in tradition, or versions of it, deny mans ability to adapt to changing circumstances.”
—Stephen Bayley (b. 1951)
“See how peaceful it is here. The sea is everything. An immense reservoir of nature where I roam at will.... Think of it. On the surface there is hunger and fear. Men still exercise unjust laws. They fight, tear one another to pieces. A mere few feet beneath the waves their reign ceases, their evil drowns. Here on the ocean floor is the only independence. Here I am free.”
—Earl Felton, and Richard Fleischer. Captain Nemo (James Mason)
“The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.”
—C.G. (Carl Gustav)