Jordan Normal Form - Powers

Powers

If n is a natural number, the nth power of a matrix in Jordan normal form will be a direct sum of upper triangular matrices, as a result of block multiplication. More specifically, after exponentiation each Jordan block will be an upper triangular block.

For example,


\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5
\end{bmatrix}^4
=\begin{bmatrix} 16 & 32 & 24 & 0 & 0 \\ 0 & 16 & 32 & 0 & 0 \\ 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 625 & 500 \\ 0 & 0 & 0 & 0 & 625
\end{bmatrix}.

Further, each triangular block will consist of λn on the main diagonal, times λn-1 on the upper diagonal, and so on. This expression is valid for negative integer powers as well if one extends the notion of the binomial coefficients .

For example,


\begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & \lambda_2
\end{bmatrix}^n
=\begin{bmatrix} \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & \tbinom{n}{2}\lambda_1^{n-2} & 0 & 0 \\ 0 & \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & 0 & 0 \\ 0 & 0 & \lambda_1^n & 0 & 0 \\ 0 & 0 & 0 & \lambda_2^n & \tbinom{n}{1}\lambda_2^{n-1} \\ 0 & 0 & 0 & 0 & \lambda_2^n
\end{bmatrix}.

Read more about this topic:  Jordan Normal Form

Famous quotes containing the word powers:

    Strange and predatory and truly dangerous, car thieves and muggers—they seem to jeopardize all our cherished concepts, even our self-esteem, our property rights, our powers of love, our laws and pleasures. The only relationship we seem to have with them is scorn or bewilderment, but they belong somewhere on the dark prairies of a country that is in the throes of self-discovery.
    John Cheever (1912–1982)

    I have come slowly into possession of such powers as I have ... I receive the opinions of my day. I do not conceive them. But I receive them into a vivid mind.
    Woodrow Wilson (1856–1924)

    The poet is the person in whom these powers are in balance, the man without impediment, who sees and handles that which others dream of, traverses the whole scale of experience, and is representative of man, in virtue of being the largest power to receive and to impart.
    Ralph Waldo Emerson (1803–1882)