Complex Matrices
In general, a square complex matrix A is similar to a block diagonal matrix
where each block Ji is a square matrix of the form
So there exists an invertible matrix P such that P-1AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal. J is called the Jordan normal form of A. Each Ji is called a Jordan block of A. In a given Jordan block, every entry on the super-diagonal is 1.
Assuming this result, we can deduce the following properties:
- Counting multiplicity, the eigenvalues of J, therefore A, are the diagonal entries.
- Given an eigenvalue λi, its geometric multiplicity is the dimension of Ker(A − λi I), and it is the number of Jordan blocks corresponding to λi.
- The sum of the sizes of all Jordan blocks corresponding to an eigenvalue λi is its algebraic multiplicity.
- A is diagonalizable if and only if, for every eigenvalue λ of A, its geometric and algebraic multiplicities coincide.
- The Jordan block corresponding to λ is of the form λ I + N, where N is a nilpotent matrix defined as Nij = δi,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the exponential exp(A).
Read more about this topic: Jordan Normal Form
Famous quotes containing the word complex:
“Its a complex fate, being an American, and one of the responsibilities it entails is fighting against a superstitious valuation of Europe.”
—Henry James (18431916)