Jordan Algebra - Special Jordan Algebras

Special Jordan Algebras

Given an associative algebra A (not of characteristic 2), one can construct a Jordan algebra A+ using the same underlying addition vector space. Notice first that an associative algebra is a Jordan algebra if and only if it is commutative. If it is not commutative we can define a new multiplication on A to make it commutative, and in fact make it a Jordan algebra. The new multiplication xy is as follows:

This defines a Jordan algebra A+, and we call these Jordan algebras, as well as any subalgebras of these Jordan algebras, special Jordan algebras. All other Jordan algebras are called exceptional Jordan algebras. The Shirshov–Cohn theorem states that any Jordan algebra with two generators is special. Related to this, Macdonald's theorem states that any polynomial in three variables, which has degree one in one of the variables, and which vanishes in every special Jordan algebra, vanishes in every Jordan algebra.

Read more about this topic:  Jordan Algebra

Famous quotes containing the words special and/or jordan:

    For universal love is as special an aspect as carnal love or any of the other kinds: all forms of mental and spiritual activity must be practiced and encouraged equally if the whole affair is to prosper. There is no cutting corners where the life of the soul is concerned....
    John Ashbery (b. 1927)

    Let me just say, at once: I am not now nor have I ever been a white man. And, leaving aside the joys of unearned privilege, this leaves me feeling pretty good ...
    —June Jordan (b. 1936)