Jordan Algebra - Special Jordan Algebras

Special Jordan Algebras

Given an associative algebra A (not of characteristic 2), one can construct a Jordan algebra A+ using the same underlying addition vector space. Notice first that an associative algebra is a Jordan algebra if and only if it is commutative. If it is not commutative we can define a new multiplication on A to make it commutative, and in fact make it a Jordan algebra. The new multiplication xy is as follows:

This defines a Jordan algebra A+, and we call these Jordan algebras, as well as any subalgebras of these Jordan algebras, special Jordan algebras. All other Jordan algebras are called exceptional Jordan algebras. The Shirshov–Cohn theorem states that any Jordan algebra with two generators is special. Related to this, Macdonald's theorem states that any polynomial in three variables, which has degree one in one of the variables, and which vanishes in every special Jordan algebra, vanishes in every Jordan algebra.

Read more about this topic:  Jordan Algebra

Famous quotes containing the words special and/or jordan:

    When we walk the streets at night in safety, it does not strike us that this might be otherwise. This habit of feeling safe has become second nature, and we do not reflect on just how this is due solely to the working of special institutions. Commonplace thinking often has the impression that force holds the state together, but in fact its only bond is the fundamental sense of order which everybody possesses.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    We do not deride the fears of prospering white America. A nation of violence and private property has every reason to dread the violated and the deprived.
    —June Jordan (b. 1939)