Johannes Kepler - Reception of His Astronomy

Reception of His Astronomy

Kepler's laws were not immediately accepted. Several major figures such as Galileo and René Descartes completely ignored Kepler's Astronomia nova. Many astronomers, including Kepler's teacher, Michael Maestlin, objected to Kepler's introduction of physics into his astronomy. Some adopted compromise positions. Ismael Boulliau accepted elliptical orbits but replaced Kepler's area law with uniform motion in respect to the empty focus of the ellipse while Seth Ward used an elliptical orbit with motions defined by an equant.

Several astronomers tested Kepler's theory, and its various modifications, against astronomical observations. Two transits of Venus and Mercury across the face of the sun provided sensitive tests of the theory, under circumstances when these planets could not normally be observed. In the case of the transit of Mercury in 1631, Kepler had been extremely uncertain of the parameters for Mercury, and advised observers to look for the transit the day before and after the predicted date. Pierre Gassendi observed the transit on the date predicted, a confirmation of Kepler's prediction. This was the first observation of a transit of Mercury. However, his attempt to observe the transit of Venus just one month later, was unsuccessful due to inaccuracies in the Rudolphine Tables. Gassendi did not realize that it was not visible from most of Europe, including Paris. Jeremiah Horrocks, who observed the 1639 Venus transit, had used his own observations to adjust the parameters of the Keplerian model, predicted the transit, and then built apparatus to observe the transit. He remained a firm advocate of the Keplerian model.

Epitome of Copernican Astronomy was read by astronomers throughout Europe, and following Kepler's death it was the main vehicle for spreading Kepler's ideas. Between 1630 and 1650, it was the most widely used astronomy textbook, winning many converts to ellipse-based astronomy. However, few adopted his ideas on the physical basis for celestial motions. In the late 17th century, a number of physical astronomy theories drawing from Kepler's work—notably those of Giovanni Alfonso Borelli and Robert Hooke—began to incorporate attractive forces (though not the quasi-spiritual motive species postulated by Kepler) and the Cartesian concept of inertia. This culminated in Isaac Newton's Principia Mathematica (1687), in which Newton derived Kepler's laws of planetary motion from a force-based theory of universal gravitation.

Read more about this topic:  Johannes Kepler

Famous quotes containing the words reception of, reception and/or astronomy:

    To aim to convert a man by miracles is a profanation of the soul. A true conversion, a true Christ, is now, as always, to be made by the reception of beautiful sentiments.
    Ralph Waldo Emerson (1803–1882)

    I gave a speech in Omaha. After the speech I went to a reception elsewhere in town. A sweet old lady came up to me, put her gloved hand in mine, and said, “I hear you spoke here tonight.” “Oh, it was nothing,” I replied modestly. “Yes,” the little old lady nodded, “that’s what I heard.”
    Gerald R. Ford (b. 1913)

    Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a “fixed” heaven.
    Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)