The JAK-STAT signaling pathway transmits information from chemical signals outside the cell, through the cell membrane, and into gene promoters on the DNA in the cell nucleus, which causes DNA transcription and activity in the cell. The JAK-STAT system is a major signaling alternative to the second messenger system.
The JAK-STAT system consists of three main components: (1) a receptor (2) Janus kinase (JAK) and (3) Signal Transducer and Activator of Transcription (STAT).
Many JAK-STAT pathways are expressed in white blood cells, and are therefore involved in regulation of the immune system.
The receptor is activated by a signal from interferon, interleukin, growth factors, or other chemical messengers. This activates the kinase function of JAK, which autophosphorylates itself (phosphate groups act as "on" and "off" switches on proteins). The STAT protein then binds to the phosphorylated receptor, where STAT is phosphorylated itself. The phosphorylated STAT protein binds to another phosphorylated STAT protein (dimerizes) and translocates into the cell nucleus. In the nucleus, it binds to DNA and promotes transcription of genes responsive to STAT.
In mammals, there are seven STAT genes, and each one binds to a different DNA sequence. STAT binds to a DNA sequence called a promoter, which controls the expression of other DNA sequences. This affects basic cell functions, like cell growth, differentiation and death.
The JAK-STAT pathway is evolutionarily conserved, from slime molds and worms to mammals (but not fungi or plants). Disrupted or dysregulated JAK-STAT functionality (which is usually by inherited or acquired genetic defects) can result in immune deficiency syndromes and cancers.
Read more about JAK-STAT Signaling Pathway: Mechanism
Famous quotes containing the word pathway:
“To learn from our enemies is the best pathway to loving them: for it makes us grateful to them.”
—Friedrich Nietzsche (18441900)