Proof
In the Jacobson density theorem, the right R-module U is simultaneously viewed as a left D-module where D=End(UR) module in the natural way: the action g·u is defined to be g(u). It can be verified that this is indeed a left module structure on U. As noted before, Schur's lemma proves D is a division ring if U is simple, and so U is a vector space over D.
The proof also relies on the following theorem proven in (Isaacs 1993) p. 185:
Theorem
- Let U be a simple right R-module and let D = End(UR) - the set of all R module endomorphisms of U. Let X be a finite subset of U and write I = annR(X) - the annihilator of X in R. Let u be in U with u·I = 0. Then u is in XD; the D-span of X.
Proof (of the Jacobson density theorem)
- We proceed by mathematical induction on the number n of elements in X. If n=0 so that X is empty, then the theorem is vacuously true and the base case for induction is verified. Now we assume that X is non-empty with cardinality n. Let x be an element of X and write Y = X \ {x}. If A is any D-linear transformation on U, the induction hypothesis guarantees that there exists an s in R such that A(y) = y·s for all y in Y.
- Write I = annR(Y). It is easily seen that x·I is a submodule of U. If it were the case that x·I = 0, then the previous theorem would indicate that x would be in the D-span of Y. This would contradict the linear independence of X, so it must be that x·I ≠ 0. So, by simplicity of U, the submodule x·I = U. Since A(x) - x·s is in U=x·I, there exists i in I such that x·i = A(x) - x·s.
- After defining r = s + i, we compute that y·r = y·(s + i) = y·s + y·i = y·s = A(y) for all y in Y. Also, x·r = x·(s + i) = x·s + A(x) - x·s = A(x). Therefore, A(z) = z·r for all z in X, as desired. This completes the inductive step of the proof. It follows now from mathematical induction that the theorem is true for finite sets X of any size.
Read more about this topic: Jacobson Density Theorem
Famous quotes containing the word proof:
“Talk shows are proof that conversation is dead.”
—Mason Cooley (b. 1927)
“War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.”
—M.F.K. Fisher (19081992)
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)