Proof
In the Jacobson density theorem, the right R-module U is simultaneously viewed as a left D-module where D=End(UR) module in the natural way: the action g·u is defined to be g(u). It can be verified that this is indeed a left module structure on U. As noted before, Schur's lemma proves D is a division ring if U is simple, and so U is a vector space over D.
The proof also relies on the following theorem proven in (Isaacs 1993) p. 185:
Theorem
- Let U be a simple right R-module and let D = End(UR) - the set of all R module endomorphisms of U. Let X be a finite subset of U and write I = annR(X) - the annihilator of X in R. Let u be in U with u·I = 0. Then u is in XD; the D-span of X.
Proof (of the Jacobson density theorem)
- We proceed by mathematical induction on the number n of elements in X. If n=0 so that X is empty, then the theorem is vacuously true and the base case for induction is verified. Now we assume that X is non-empty with cardinality n. Let x be an element of X and write Y = X \ {x}. If A is any D-linear transformation on U, the induction hypothesis guarantees that there exists an s in R such that A(y) = y·s for all y in Y.
- Write I = annR(Y). It is easily seen that x·I is a submodule of U. If it were the case that x·I = 0, then the previous theorem would indicate that x would be in the D-span of Y. This would contradict the linear independence of X, so it must be that x·I ≠ 0. So, by simplicity of U, the submodule x·I = U. Since A(x) - x·s is in U=x·I, there exists i in I such that x·i = A(x) - x·s.
- After defining r = s + i, we compute that y·r = y·(s + i) = y·s + y·i = y·s = A(y) for all y in Y. Also, x·r = x·(s + i) = x·s + A(x) - x·s = A(x). Therefore, A(z) = z·r for all z in X, as desired. This completes the inductive step of the proof. It follows now from mathematical induction that the theorem is true for finite sets X of any size.
Read more about this topic: Jacobson Density Theorem
Famous quotes containing the word proof:
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)
“In the reproof of chance
Lies the true proof of men.”
—William Shakespeare (15641616)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)