Jacobian Determinant
If m = n, then F is a function from n-space to n-space and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply called "the Jacobian."
The Jacobian determinant at a given point gives important information about the behavior of F near that point. For instance, the continuously differentiable function F is invertible near a point p ∈ Rn if the Jacobian determinant at p is non-zero. This is the inverse function theorem. Furthermore, if the Jacobian determinant at p is positive, then F preserves orientation near p; if it is negative, F reverses orientation. The absolute value of the Jacobian determinant at p gives us the factor by which the function F expands or shrinks volumes near p; this is why it occurs in the general substitution rule.
Read more about this topic: Jacobian Matrix And Determinant