Jacobian Matrix and Determinant - Examples

Examples

Example 1. The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates (x1, x2, x3), is given by the function F : R+ × × [0,2π) → R3 with components:

The Jacobian matrix for this coordinate change is

J_F(r,\theta,\phi) =\begin{bmatrix}
\dfrac{\partial x_1}{\partial r} & \dfrac{\partial x_1}{\partial \theta} & \dfrac{\partial x_1}{\partial \phi} \\
\dfrac{\partial x_2}{\partial r} & \dfrac{\partial x_2}{\partial \theta} & \dfrac{\partial x_2}{\partial \phi} \\
\dfrac{\partial x_3}{\partial r} & \dfrac{\partial x_3}{\partial \theta} & \dfrac{\partial x_3}{\partial \phi} \\
\end{bmatrix}=\begin{bmatrix}
	\sin\theta\, \cos\phi & r\, \cos\theta\, \cos\phi & -r\, \sin\theta\, \sin\phi \\
	\sin\theta\, \sin\phi & r\, \cos\theta\, \sin\phi & r\, \sin\theta\, \cos\phi \\
	\cos\theta & -r\, \sin\theta & 0
\end{bmatrix}.

The determinant is r2 sin θ. As an example, since dV = dx1 dx2 dx3 this determinant implies that the differential volume element dV = r2 sin θ dr . Nevertheless this determinant varies with coordinates. To avoid any variation the new coordinates can be defined as Now the determinant equals 1 and volume element becomes .

Example 2. The Jacobian matrix of the function F : R3 → R4 with components

is

J_F(x_1,x_2,x_3) =\begin{bmatrix}
\dfrac{\partial y_1}{\partial x_1} & \dfrac{\partial y_1}{\partial x_2} & \dfrac{\partial y_1}{\partial x_3} \\
\dfrac{\partial y_2}{\partial x_1} & \dfrac{\partial y_2}{\partial x_2} & \dfrac{\partial y_2}{\partial x_3} \\
\dfrac{\partial y_3}{\partial x_1} & \dfrac{\partial y_3}{\partial x_2} & \dfrac{\partial y_3}{\partial x_3} \\
\dfrac{\partial y_4}{\partial x_1} & \dfrac{\partial y_4}{\partial x_2} & \dfrac{\partial y_4}{\partial x_3} \\
\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 8x_2 & -2 \\ x_3\cos(x_1) & 0 & \sin(x_1) \end{bmatrix}.

This example shows that the Jacobian need not be a square matrix.

Example 3.

The Jacobian determinant is equal to . This shows how an integral in the Cartesian coordinate system is transformed into an integral in the polar coordinate system:

Example 4. The Jacobian determinant of the function F : R3 → R3 with components

\begin{align} y_1 &= 5x_2 \\ y_2 &= 4x_1^2 - 2 \sin (x_2x_3) \\ y_3 &= x_2 x_3
\end{align}

is

\begin{vmatrix} 0 & 5 & 0 \\ 8 x_1 & -2 x_3 \cos(x_2 x_3) & -2x_2\cos(x_2 x_3) \\ 0 & x_3 & x_2
\end{vmatrix} = -8 x_1 \cdot \begin{vmatrix} 5 & 0 \\ x_3 & x_2
\end{vmatrix} = -40 x_1 x_2.

From this we see that F reverses orientation near those points where x1 and x2 have the same sign; the function is locally invertible everywhere except near points where x1 = 0 or x2 = 0. Intuitively, if you start with a tiny object around the point (1,1,1) and apply F to that object, you will get an object set with approximately 40 times the volume of the original one.

Read more about this topic:  Jacobian Matrix And Determinant

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)