Iwasawa Theory - Formulation

Formulation

Iwasawa worked with so-called -extensions: infinite extensions of a number field with Galois group isomorphic to the additive group of p-adic integers for some prime p. Every closed subgroup of is of the form, so by Galois theory, a -extension is the same thing as a tower of fields such that . Iwasawa studied classical Galois modules over by asking questions about the structure of modules over .

More generally, Iwasawa theory asks questions about the structure of Galois modules over extensions with Galois group a p-adic Lie group.

Read more about this topic:  Iwasawa Theory

Famous quotes containing the word formulation:

    In necessary things, unity; in disputed things, liberty; in all things, charity.
    —Variously Ascribed.

    The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)

    Art is an experience, not the formulation of a problem.
    Lindsay Anderson (b. 1923)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)