Connections With P-adic Analysis
From this beginning in the 1950s, a substantial theory has been built up. A fundamental connection was noticed between the module theory, and the p-adic L-functions that were defined in the 1960s by Kubota and Leopoldt. The latter begin from the Bernoulli numbers, and use interpolation to define p-adic analogues of the Dirichlet L-functions. It became clear that the theory had prospects of moving ahead finally from Kummer's century-old results on regular primes.
The main conjecture of Iwasawa theory was formulated as an assertion that two methods of defining p-adic L-functions (by module theory, by interpolation) should coincide, as far as that was well-defined. This was proved by Mazur & Wiles (1984) for Q, and for all totally real number fields by Wiles (1990). These proofs were modeled upon Ken Ribet's proof of the converse to Herbrand's theorem (so-called Herbrand-Ribet theorem).
Karl Rubin found a more elementary proof of the Mazur-Wiles theorem by using Kolyvagin's Euler systems, described in Lang (1990) and Washington (1997), and later proved other generalizations of the main conjecture for imaginary quadratic fileds.
Read more about this topic: Iwasawa Theory
Famous quotes containing the words connections and/or analysis:
“I have no connections here; only gusty collisions,
rootless seedlings forced into bloom, that collapse.
...
I am the Visiting Poet: a real unicorn,
a wind-up plush dodo, a wax museum of the Movement.
People want to push the buttons and see me glow.”
—Marge Piercy (b. 1936)
“A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.”
—Karl Marx (18181883)