Connections With P-adic Analysis
From this beginning in the 1950s, a substantial theory has been built up. A fundamental connection was noticed between the module theory, and the p-adic L-functions that were defined in the 1960s by Kubota and Leopoldt. The latter begin from the Bernoulli numbers, and use interpolation to define p-adic analogues of the Dirichlet L-functions. It became clear that the theory had prospects of moving ahead finally from Kummer's century-old results on regular primes.
The main conjecture of Iwasawa theory was formulated as an assertion that two methods of defining p-adic L-functions (by module theory, by interpolation) should coincide, as far as that was well-defined. This was proved by Mazur & Wiles (1984) for Q, and for all totally real number fields by Wiles (1990). These proofs were modeled upon Ken Ribet's proof of the converse to Herbrand's theorem (so-called Herbrand-Ribet theorem).
Karl Rubin found a more elementary proof of the Mazur-Wiles theorem by using Kolyvagin's Euler systems, described in Lang (1990) and Washington (1997), and later proved other generalizations of the main conjecture for imaginary quadratic fileds.
Read more about this topic: Iwasawa Theory
Famous quotes containing the words connections with, connections and/or analysis:
“Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?”
—Elizabeth Janeway (b. 1913)
“A foreign minister, I will maintain it, can never be a good man of business if he is not an agreeable man of pleasure too. Half his business is done by the help of his pleasures: his views are carried on, and perhaps best, and most unsuspectedly, at balls, suppers, assemblies, and parties of pleasure; by intrigues with women, and connections insensibly formed with men, at those unguarded hours of amusement.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.”
—Joan Didion (b. 1934)